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Abstract—This study evaluates a Neuro-Evolution (NE)
method for controller evolution in simulated robot teams, where
the goal is to evaluate the morphological robustness of evolved con-
trollers. Artificial Neural Network (ANN) controllers are evolved
for a specific sensory configuration (morphology) and then
evaluated on a set of different morphologies. The morphological
robustness of evolved controllers is evaluated according to team
task performance given a collective construction task of increasing
complexity. The overall objective was to ascertain an appropriate
method for evolving ANN controllers that are readily transferable
to robot teams with varied morphologies. Such controller transfer
is necessary if task specifications change and different sensory
configurations are required, or if robots are damaged and some
sensors become disabled. In both cases it is ideal if teams continue
to exhibit consistent behavior and a similar task performance.
Results indicate that an indirect (developmental) encoding NE
method consistently evolves controllers that fully function when
transferred to teams with varied morphologies. That is, where
comparable or higher task performances were yielded compared
to controllers evolved specifically for the varied morphology.

I. INTRODUCTION

An open problem in collective [1] and swarm robotics
[2] is ascertaining appropriate sensory-motor configurations
(morphologies) for robots comprising teams that must work
collectively given automatically generated controllers [3]. In
evolutionary robotics [4], a popular method is to co-evolve
robot behaviors and morphologies [5], [6], [7], [8]. Within the
purview of such body-brain co-evolution, indirect encoding
(developmental) methods have been effectively demonstrated
for various single-robot tasks [9], [10], [11]. However, with few
exceptions [12], [13], [14] there has been relatively little work
that evaluates developmental methods to evolve behavior and
morphology for collective robotics tasks, excluding related re-
search in self-assembling and reconfigurable collective robotics
[15], [16]. Specifically, this study focuses on developmental
methods to evolve controllers that exhibit consistently robust
behaviors such that robot teams effectively adapt to the loss
of sensors or new sensory configurations without significant
degradation of collective task performance, that is, morpho-
logically robust behavior.

This study contributes to an open problem in evolutionary
robotics, that is to evolve robot controllers that can continue to
appropriately function given unforseen morphological change
to the robot such as sensor damage or malfunction [17],
[18]. Such robust controller evolution would yield significant
advantages in applications where robust autonomous behavior

is continually required [19]. In this study, the specific focus is
on the evolution of morphologically robust behavior for robotic
teams that must accomplish collective behavior tasks.

Given the added computational complexity of co-evolving
body-brain couplings for behaviorally and morphologically
heterogenous robots, this study focuses on evolving collec-
tive behaviors for homogenous teams with a range of fixed
morphologies. We apply the HyperNEAT [20] neuro-evolution
method to evolve behavior for a range of morphologically
homogenous teams that must solve various collective construc-
tion tasks. HyperNEAT was selected as it is a developmental
encoding NE method with demonstrated benefits that include
exploiting task geometry to evolve modular and regular ANN
controllers with increased problem-solving capacity [21], [22].

The research contribution is to demonstrate the efficacy of
developmental neuro-evolution (HyperNEAT) for addressing
the evolution of morphologically robust controllers in the
context of collective robotics. To address this objective, this
study tested and evaluated five different robot team sensory
configurations (morphologies) in company with three collec-
tive construction tasks of increasing complexity. The fittest
Artificial Neural Network (ANN) controller evolved for a
given morphology was then transferred and evaluated in each
of the other team morphologies. Such transferred controllers
were also evaluated in each of the three tasks. In all cases,
evolved controller efficacy was evaluated in terms of collective
construction task performance yielded by a robot team.

The Collective construction task [23] was selected since it
benefits from fully automated robot teams that must exhibit
robust behavior to handle changing task constraints, poten-
tial robot damage and sensor noise. For example, collective
construction of functional structures and habitats in remote
or hazardous environments [24]. As in related work [23], the
task was for robots to search the environment for building-
block resources, then move them such that are connected to
other blocks. The task is solved if the team connects all blocks
forming a structure during its lifetime, and this is equated
with optimal task performance. However, the task is considered
partially solved if only a sub-set of the blocks are connected
by the team, though in such instances, team task performance
is proportional to the number of blocks connected. In this
study, task complexity was equated with the number of robots
needed to collectively push blocks together (cooperation) to
be connected as a structure and whether the blocks must
be connected in a specific sequence, that is, according to a



construction schema, table III.

Hence, we report a preliminary investigation into devel-
opmental methods (HyperNEAT is tested in this case study)
for evolving ANN controllers that are robust to morphological
change in robotic teams or swarms that must operate in
dynamic, noisy and hazardous environments.

II. METHODS

HyperNEAT [20] is an extension of NEAT (Neuro-
Evolution of Augmented Topologies) [25], where ANNs are
indirectly encoded using a CPPN (Compositional Pattern Pro-
ducing Network) [26]. HyperNEAT was selected as it has a
number of benefits demonstrated in previous work [22], [13].
This includes its capability to exploit geometric features such
as symmetry, regularity and modularity in robot morphology
and the task environment during controller evolution.

In this study, HyperNEAT evolves the connection weights
between each robot’s sensory input layer, hidden layer and
motor output layer, where each robot used the same controller,
making teams homogenous. Controller evolution experiments
were initialized with a given morphology (table I). However, in
one experiment set, each robot’s sensor configuration of team
morphology could be co-adapted via HyperNEAT activating
and deactivating sensory input node connections over the
evolutionary process. For these experiments (section III), add
connection and remove connection mutation operators (table
II) from previous work [14] were applied every generation to
a sensory input node chosen with uniform random selection.
The mutation operator applied depended on whether the chosen
input node was connected or not. The construction zone sensor
(table I) was permanently activated for all morphologies and
could not be disconnected, as this enabled robots to detect
construction zones (section III-A).

Table I presents a list of morphology identification (ID)
numbers and the number and type of sensors that correspond
to each morphology. For example, morphology 2 has four prox-
imity sensors, one ultrasonic sensor, one colour-ranged sensor,
and one low-resolution camera. Note that all morphologies
have a construction sensor as this is necessary to complete
the collective construction task.

A. Robot Team Controller

Each robot in the team used an ANN controller with N
sensory input nodes, determined by the given morphology
being evaluated (table I). Each robot’s controller mapped
sensory inputs, via a fully connected hidden layer, to two motor
outputs, the robot’s left and right wheels (figure 1).

Figure 1 illustrates the sensory configuration for N = 11
(morphology 1), and the associated substrate and CPPN used
by HyperNEAT. For each robot morphology (table I), the
sensors corresponding to the input layer of the controller was a
circle N nodes distributed about a robot’s periphery, where the
exact geometric configuration corresponded to the morphology
being evaluated (figure 1 illustrates morphology 1)1. The
intermediate ANN hidden layer reflects the configuration of the
input layer, preserving the geometry of the sensory input layer,

1Illustrations of all robot morphologies tested can be found at: https://github.
com/not-my-name/SSCI Paper Appendix

that is, the direction of each sensor’s FOV (figure 1). The ANN
was initialized with random weights normalized to the range
[-1.0, 1.0], with full connectivity between adjacent layers,
however, partial connectivity was evolvable via the CPPN
generating a zero weight. Collectively all sensors approximated
up to a 360 degree Field of View (FOV).

The nodes comprising each robot’s ANN controller, con-
nected by the CPPN, were placed in the substrate illustrated
in figure 1. Each node in the substrate was placed at specific
(x, y) locations in the two-dimensional geometric space of the
substrate (x, y axes were in the range: [-1, 1]). Connection
weights in the controller were evolved via querying the CPPN
for the weight of any connection between two points (x1, y1)
and (x2, y2) by inputting (x1, y1, x2, y2) into the CPPN,
which subsequently output the associated weight. During Hy-
perNEAT’s evolutionary process, the CPPN was evolved via
having nodes and connections added and removed, as well as
connection weight values mutated [20].

Thus, the CPPN evolved a connectivity pattern across the
geometry of the ANN via querying all the potential connec-
tions for their weights. This connectivity pattern was effec-
tively a function of the task and ANN geometry, which enabled
HyperNEAT to exploit the structure (regularity, repetition and
symmetry) of the task and robot morphology. For example,
there was symmetry in the robot morphology in terms of the
positioning of sensors about each robot’s periphery (figure
1) and there was regularity and repetition in the collective
construction task, in terms of repeating block types comprising
modular and regular structures. In the collective construction
task, modularity was defined as the composition of modular
structures (buildings in construction zones) from a sequence
of connected blocks and regularity was defined as the same
sequence of blocks repeated in a building.

Previous work has demonstrated that the indirect encoding
of an evolved CPPN facilitates the evolution of robot con-
trollers with increased task performance enabled by a compact
representation of task and robot geometry [27], [13]. Table II
presents the HyperNEAT parameters used in this study, where
delta was angle between the (x1, y1, x2, y2) positions of nodes
in the substrate. These parameter values were determined
experimentally. All other HyperNEAT parameters not listed
in table II, were set as in previous work [27].

1) Detection Sensors: Each robot was equipped with vari-
ous sensor types, where the exact sensor complement, includ-
ing the relative position and direction on the robot depends
upon the given experiment (section III) and morphology being
evaluated (table I). Each robot had N sensors corresponding
to the N inputs comprising the robot’s ANN sensory input
layer (figure 1), each with a range of r (portion of the
environment’s length). A robot’s sensory FOV was split into N
sensor quadrants, where all sensors were constantly active for
the duration of the robot’s lifetime. The nth sensor returned a
value in the normalized range [0.0, 1.0], in the corresponding
nth sensor quadrant. A value of 0.0 indicated that no blocks
were detected and a value of 1.0 indicated that an object was
detected at the closest possible distance to the given sensor.

Table II presents the different sensor types used in this
study, where the functional properties of each sensor (range
and FOV) were abstractions of corresponding physical sensors



Fig. 1. Left (color): Robot morphology 1, with relative positions of various sensors on the robot. Right (gray-scale): ANN Topology as it relates to robot
morphology 1: 11 Sensory inputs [S0, S10]. Sensory inputs connect to a hidden layer (left). Connection weight values between two nodes (x1, y1, x2, y2)
are evolved by querying the CPPN (center) with x, y values in the range [-1, 1] (axis shown). The hidden layer is fully connected to all inputs and outputs
(connectivity not depicted). Motor outputs (right) L and R determine the speed of the left and right wheels, respectively, and thus a robot’s speed and direction.

typically used on the Khepera III robots [28]. In table II, range
values are units defined in relation to the environment size
(20 x 20) and FOV values are in radians. Each morphology
also included a special construction zone detection sensor that
activated with a value in the range [0.0, 1.0] whenever a robot
came into contact with a block that must be connected with
other already connected blocks.

The construction zone sensor calculated the squared Eu-
clidean norm, bounded by a minimum observation distance, as
an inversely proportional distance between this robot and the
closest construction zone, where a value of 1.0 indicated the
robot (pushing a block) was in contact with the construction
zone and a value of 0.0 indicated that the robot (pushing a
block) was the maximum possible distance from the closest
construction zone. Robots were unable to detect each other,
thus all cooperative interactions were stigmergic [29] where
robots interacted via pushing blocks into the environment’s
construction zone. Furthermore, robots had no a priori knowl-
edge of the construction schema, but rather must discover
the construction schema rules by trial and error. Also, once
at least two blocks had been pushed and connected together
this formed a construction zone (section III-A), that was then
visible to each robot’s construction zone sensor.

2) Movement Actuators: Two wheel motors control a
robot’s heading at constant speed. Movement is calculated in
terms of real valued vectors (dx and dy). Wheel motors (L
and R in figure 1) need to be explicitly activated. A robot’s
heading is determined by normalizing and scaling its motor
output values by the maximum distance a robot can traverse
in one iteration (table II). That is:

dx = dmax(o1 − 0.5)

dy = dmax(o2 − 0.5)

Where, o1 and o2 are the motor output values, correspond-
ing to the left and right wheels, respectively, producing an
output in the range: [-1.0, 1.0]. These output values indicate
how fast each respective wheel must turn. Equal output equates
to straight forward motion and unequal output results in the
robot rotating about its own axis. The dmax value indicates
the maximum distance a robot can move in one simulation
iteration (normalized to 1.0, table II).

III. EXPERIMENTS

Experiments2 tested 15 robots in a bounded two dimen-
sional continuous environment (20 x 20 units) with randomly
distributed type A, B and C blocks (table II). Robots and
blocks were initialized with random orientations and positions
throughout the environment. A construction schema (table III)
dictated the sequence of block types that must be connected
together in order that a specific structure be built [30]. Figure 2
presents an example of the team of 15 robots working to solve
the collective construction task in the simulation environment
containing a distribution of five of each block type (A, B and
C), colored blue, green and red, respectively. Other colored
blocks in the environment indicate those already connected
in construction zones (three illustrated). The purple, blue and
green semi-circles emanating from each robot represent the
FOV of active sensors, where the different colors correspond
to different sensor types (table II).

As the purpose this study was to demonstrate the mor-
phological robustness of HyperNEAT evolved controllers for
a collective behavior task of increasing complexity, the first
two versions of the collective construction task required no
cooperation and some degree of cooperation, respectively,
though any block could be connected to any other block.
Where as, the most complex version of the task required
cooperation and block types to be connected according to a
construction schema (table III).

A. Collective Construction Task

This task required the robot team to search the environment
for building-blocks and cooperatively push them together in
order that they connected to form a structure, where connected
blocks then formed a construction zone. Task complexity was
equated with the degree of cooperation required to collectively
push blocks and connect them together in the construction zone
and whether or not a construction schema was required. In
this construction task, there were three block types, A, B and
C requiring one, two and three robots to push, respectively.
Cooperation occurred when at least two robots simultaneously
pushed a type B block, or at least three robots pushed a type
C block.

2Source code for all experiments is online at: https://github.com/
not-my-name/ExperimentsRerun



TABLE I. SENSORY CONFIGURATION (NUMBER OF SENSORS) FOR EACH MORPHOLOGY.

Morphology ID Proximity Sensors Ultrasonic Sensors Color Ranged Sensors Low-Resolution Camera Construction Zone Sensors

1 5 3 1 1 1

2 4 1 1 1 1

3 0 0 1 1 1

4 2 0 1 1 1

5 2 2 1 1 1

Fig. 2. Example of the simulation environment. Robots search for randomly
distributed type A, B, and C blocks (blue, green and red, respectively). Other
colored and labeled blocks indicate those already connected in construction
zones. Different coloured semi-circles emanating from each robot represent
the field of view of currently active different sensor types (table II).

Fig. 3. Task level 3 construction schema: A, B, and C are the block types.
The label on each side of each block type indicates what block type can be
connected to this side. An X label indicates that no block can be connected.

Table III presents the three levels of task complexity for
the collective construction task. Level 1 was the least complex
as it did not require any cooperation, given that it in this case
there were only type A blocks in the environment. Level 2
was of medium complexity as there are equal numbers of
type A, B, and C blocks in the environment, where block
types B and C required at least two and three robots to push,
respectively. Level 3 was the most complex, as it required the
same degree of cooperation as task level 2, though blocks had
to be connected according to a construction schema. Figure 3
illustrates this construction schema, where the label on each
of the four sides of each block type indicates what other block
type can be connected to the given side. The X label indicates
that no block can be connected to a given side.

The construction zone was formed via at least two blocks
pushed together and was thus any structure being built in

the environment. Once a construction zone was created, all
blocks attached to it were fixed in position and could not
be disconnected. The task mandated a maximum of three
construction zones and unconnected blocks had to be pushed
and connected to one of these construction zones. For task
levels 1 and 2, any block could be connected to any other
block, meaning that when two blocks were pushed together
they automatically connected. For task level 3, blocks had to
be pushed together such that they were connected on specific
sides according to the construction schema (figure 3).

Team task performance was calculated as the number of
blocks connected in construction zones during a team’s lifetime
(equation 1), where average task performance was calculated
as the highest task performance selected at the end of each run
(100 generations) and averaged over 20 runs (table II). The
fitness function to direct controller evolution was a weighted
sum of the number of times type A blocks were pushed by one
robot and connected (a in equation 1), the number of times
type B blocks were pushed by two robots and connected (b
in equation 1), and the number of times type C blocks were
pushed by three robots and connected (c in equation 1).

f = raa+ rbb+ rcc (1)

Parameter tuning experiments found that setting the
weights (reward values ra, rb and rc) in equation 1 to 0.3,
0.6, and 1.0, respectively, resulted in functional controller
evolution. Fitness was normalized to the range [0.0, 1.0] using
the maximum possible fitness yielded from all blocks being
pushed and connected in construction zones.

B. Experiment Design

Experiments evaluated the morphological robustness of
HyperNEAT evolved controllers for robot teams that must ac-
complish collective construction tasks of increasing complexity
(section III-A). We measured the average comparative task per-
formance of controllers evolved for a given team morphology
and task complexity where such controllers were then trans-
ferred to and re-evaluated in other team morphologies. Thus,
teams that achieved an average task performance that was not
significantly lower across all re-evaluated morphologies were
considered to be morphologically robust.

This study comprised five experiment sets, where the first
four experiment sets evolved controllers given team mor-
phologies 1 − 4 (table I) for three levels of increasing task
complexity (table III). The fifth experiment set investigated
the co-adaptation of team morphology and behavior, where
morphology 5 (table I) was used as the initial sensory con-
figuration for all robots in the team. This fifth experiment set
was included in order to gauge if co-adapting behavior and



TABLE II. EXPERIMENT, NEURO-EVOLUTION AND SENSOR
PARAMETERS

Generations 100
Sensors per robot 11, 8, 4, 6, random
Evaluations per genotype 5
Experiment runs 20
Environment length, width 20
Max Distance (Robot movement per iteration) 1.0
Team size 15
Team Lifetime (Simulation iterations) 1000
Lifetimes per generation 5
Type A blocks (1 robot to push) 15
Type B blocks (2 robots to push) 15
Type C blocks (3 robots to push) 15

Mutation rate

Add neuron 0.25
Add connection 0.008
Remove connection 0.002
Weight 0.1

Population size 150
Survival rate 0.3
Crossover proportion 0.5
Elitism proportion 0.1
CPPN topology Feed-forward
CPPN inputs Position, delta, angle

Sensor Range FOV

Proximity Sensor 1.0 0.2
Ultrasonic Sensor 4.0 1.2
Ranged Colour Sensor 3.0 1.5
Low-Res Camera 3.0 1.5
Colour Proximity Sensor 3.0 3.0

TABLE III. TASK COMPLEXITY. NOTE: TASK LEVEL 3 INCLUDES A
CONSTRUCTION SCHEMA (FIGURE 3).

Construction Task Complexity Level 1 Level 2 Level 3

Type A blocks (1 robot to push) 15 5 5
Type B blocks (2 robots to push) 0 5 5
Type C blocks (3 robots to push) 0 5 5
Construction schema No No Yes

morphology yielded any benefits in this collective construction
task as it did in related collective behavior tasks [14].

Each experiment set comprised a controller evolution stage
and a re-evaluation stage (morphological robustness test). For
controller evolution, each experiment applied HyperNEAT to
evolve team behavior for 15 robots for 100 generations, where
a generation comprised five team lifetimes (1000 simulation
iterations). Each team lifetime tested different robot starting
positions, orientations, and block locations in the simulation
environment. The fittest controller evolved for each task level
(yielding the highest absolute task performance) was then re-
evaluated for morphological robustness in all other morpholo-
gies. For example, the fittest controller evolved for morphology
1 was re-evaluated in morphologies 2−4 and the average task
performance calculated across all re-evaluation runs.

Each re-evaluation run was non-evolutionary, where con-
trollers were not further evolved, and each re-evaluation run
was equivalent to one team lifetime. Re-evaluation runs were
repeated 20 times for a given morphology, in order to account
for random variations in robot and block starting positions and
orientations. For each fittest controller, re-evaluated in a given
morphology, an average task performance was calculated over

these 20 runs, and then an overall average task performance
was computed for all re-evaluated morphologies.

As per this study’s objectives, these morphological re-
evaluation runs tested how robust the fittest evolved controllers
(for a given morphology) were to variations in that mor-
phology. Thus, re-evaluating the fittest controllers on other
morphologies emulated sensor loss due to damage or new robot
morphologies introduced due to changing task constraints.

IV. RESULTS & DISCUSSION

For each controller evolution experiment, the average max-
imum task performance of controllers evolved for a given
morphology and level of task complexity, was recorded.
Specifically, this task performance was calculated by running
the absolute fittest controller evolved after 20 evolutionary
runs (for a given a morphology and task level), in the same
morphology over 20 non-evolutionary runs. This is presented
in figures 4, 5 and 6 (left column), where controllers were
evolved given morphologies 1-5 (table I). In figures 4, 5 and 6
(left column), these results are presented from left to right. For
example, average task performance results for morphology 1
are plotted on the left-most side and average task performance
results for morphology 5 are plotted on the right-most side.

For each re-evaluation experiment, the fittest controller
evolved for a given morphology and task complexity level was
re-evaluated in all other morphologies (for the same level of
task complexity), and an average task performance computed
over 20 runs. These morphological re-evaluation results are
presented in figures 4, 5 and 6 (right column). Each of the
five plots (from left to right) in each figure corresponds to
the fittest controller evolved for each of the five morphologies
and re-evaluated in all other morphologies. For example, the
left-most plot presents the average task performance of the
fittest controller evolved in morphology 1 and re-evaluated on
morphologies 2 − 5. Where as, the right-most plot presents
the average task performance of the fittest controller evolved
given morphology 5 (as the initial sensory configuration) and
re-evaluated on morphologies 1− 4.

To gauge the impact of a given team morphology (table I)
in company with a given level of task complexity (table III), the
t-test [31] (p < 0.05), was applied in pair-wise comparisons
between sets of controller evolution results3 (figures 4, 5 and
6, left column). Within each given level of task complexity,
no statistically significant difference was found between con-
trollers evolved given morphologies 1−5 (controller evolution
experiments 1−5). Controller evolution experiments 1−4 were
those implementing controller evolution in fixed sensory con-
figurations (morphologies 1−4). Where as, controller evolution
experiment 5 used morphology 5 as the initial sensory config-
uration and subsequently co-adapted behavior (controller) and
morphology (complement of sensors). The lack of statistical
difference between controllers evolved given morphologies
1 − 4 (table I) indicates that these sensory configurations
were not sufficiently different so as to result in significantly
different average maximum task performances. Also, the lack
of any significant difference between the average maximum

3Statistical test results for pair-wise comparisons for the fittest evolved
controllers (for a given morphology) tested in each other morphology (indi-
vidually) is online at: https://github.com/not-my-name/SSCI Paper Appendix



Fig. 4. Left column: Average team task performance for controller evolution (task level 1) given morphologies 1−5 (depicted from left to right). Right column:
Average task performance given the fittest controller evolved for each successive morphology (1− 5, shown left to right) re-evaluated in all other morphologies.
For example: Left-most plot is average task performance of fittest controller evolved for morphology 1, re-evaluated in morphologies 2− 5. Right-most plot is
the average task performance of fittest controller evolved for morphology 5, re-evaluated in morphologies 1− 4.

Fig. 5. Left column: Average team task performance for controller evolution (task level 1) given morphologies 1−5 (depicted from left to right). Right column:
Average task performance given the fittest controller evolved for each successive morphology (1− 5, shown left to right) re-evaluated in all other morphologies.
For example: Left-most plot is average task performance of fittest controller evolved for morphology 1, re-evaluated in morphologies 2− 5. Right-most plot is
the average task performance of fittest controller evolved for morphology 5, re-evaluated in morphologies 1− 4.

Fig. 6. Left column: Average team task performance for controller evolution (task level 1) given morphologies 1−5 (depicted from left to right). Right column:
Average task performance given the fittest controller evolved for each successive morphology (1− 5, shown left to right) re-evaluated in all other morphologies.
For example: Left-most plot is average task performance of fittest controller evolved for morphology 1, re-evaluated in morphologies 2− 5. Right-most plot is
the average task performance of fittest controller evolved for morphology 5, re-evaluated in morphologies 1− 4.

task performance of controllers evolved given morphologies
1 − 4 and behavior-morphology co-adaptation (starting with
morphology 5), supports previous results demonstrating that
behavior-morphology co-adaptation yields at least comparable
task performance benefits (compared to fixed morphology
controller evolution) in collective behavior tasks [14].

However, to address this study’s main objective it was nec-
essary to ascertain the morphological robustness of the fittest
controller evolved in each morphology when re-evaluated in all
other morphologies. To gauge the morphological robustness of
the fittest controllers evolved for a given morphology (1− 5),
and a given task complexity, we applied the t-test in pair-
wise comparisons of two result data sets. First, the average
maximum task performances yielded by controller evolution
in morphologies 1− 5 and second, the average maximum task
performances yielded from re-evaluating the fittest controller

evolved for a given morphology in all other morphologies
(section III-B).

Statistical test results indicated no significant difference
(with one exception) between average task performance re-
sults yielded by controller evolution and morphological re-
evaluation experiments for all task complexity levels. Specif-
ically, the average maximum task performance yielded by
controllers evolved given morphologies 2-5 (figures 4, 5, 6,
left column) was not significantly lower than the average task
performance yielded by the fittest controllers (evolved in mor-
phologies 1−5), and then re-evaluated on other morphologies
(figures 4, 5, 6, right column). The exception was morphology
1 in task complexity levels 2 and 3. In these tasks, the fittest
controller evolved for morphology 1, yielded a significantly
higher average task performance than that yielded when this
fittest controller was re-evaluated in morphologies 2− 5.



Hence, these results indicate that controllers evolved by
HyperNEAT for a given morphology (table I), overall have the
capacity to continue to effectively operate when transferred to
other morphologies. This result was found to hold for all four
of the five morphologies that controllers were evolved for, and
for all levels of task complexity tested (table III).

The efficacy of HyperNEAT for evolving morphologically
robust controllers is further supported by the controller evo-
lution experiments that used morphology 5 (section III). In
this case, the number of sensors was adapted meaning that
team behavior and morphology were co-adapted. Specifically,
these controller evolution experiments began with the sensory
configuration of morphology 5 (table I) and enabled and
disabled sensor connections to better couple morphology with
the evolved controller. Hence, the fittest controller evolved
in this case often corresponded to a sensory configuration
dissimilar to morphology 5 (the initial sensory configuration).
Results indicated that the fittest controller evolved for mor-
phology 5, when re-evaluated in other morphologies, yielded
an average task performance that was statistically comparable
to the average task performance yielded by controller evolution
given morphology 5. This result was observed for all three task
complexity levels (figures 4, 5, and 6, right column).

Thus, controllers evolved for fixed morphologies (1 − 4,
table I), were found to be morphologically robust, as there
was no significant difference in average maximum task per-
formance when the fittest controller (evolved for morphology
1 − 4), was re-evaluated in other morphologies. Furthermore,
the fittest controller evolved for an adaptive morphology (5, ta-
ble I), was similarly found to be morphologically robust, given
that the average maximum task performance yielded when this
fittest controller was re-evaluated in other morphologies (1−4),
was comparable to the average maximum task performance
yielded from morphology 5 controller evolution experiment.
This is theorized to be a result of the complexity of co-
adapting effective controller-morphology couplings [32] within
limited periods of artificial evolution (100 generations in these
experiments, table II), offset by the transference of evolved
connectivity patterns [33] as functional controllers across
varying robot morphologies [34]. Such connectivity patterns
encode behaviors that do not rely upon specific sensory-motor
mappings in controllers and thus do not necessitate specific
task environment configurations, such as specific numbers
of agents or objects. This in turn facilitates the transfer of
controllers across varying team morphologies [35], [36], [37].

These results are corroborated by related work [34], [13],
and contribute further empirical evidence that HyperNEAT
yields significant benefits in evolving robot controllers that
effectively operate in other morphologies. That is, this study
further demonstrated HyperNEAT’s capability to exploit ge-
ometric properties such as regularity, repetition and symme-
try in robot morphology and environment [20], where such
modularity and geometric properties are encoded in evolved
connectivity patterns. This is prevalent in this study, as the
configuration of sensors on each robot’s periphery was sym-
metrical for all morphologies tested (section II-A). Also, the
collective construction task required that blocks be connected
together in a repeated manner in a symmetrical bounded
simulation environment (20x20 units, table II). The capability
of HyperNEAT evolved controllers to operate in different

morphologies is further supported by other research [35]
demonstrating that evolved indirect sensory-motor mappings
can encapsulate effective behaviors with relatively few task
environment and robot geometric relationships, such as desired
positions and angles between robots and different object types.

The efficacy of HyperNEAT for evolving morphologically
robust controllers for collective behavior tasks of varying
complexity is also supported by related research in multi-
agent policy transfer [35], [36], [37]. Policy transfer methods
facilitate the transfer of behaviors across tasks of increasing
complexity or between dissimilar tasks. Such studies have
demonstrated that HyperNEAT is an effective method for
evolving behaviors in one collective behavior task and then
transferring the evolved behavior to a related but more complex
task (for example, where robots have more complex sensory-
motor configurations to process increased task complexity)
with relatively little loss in average team task performance.

However, we hypothesize that the morphological robust-
ness of HyperNEAT evolved controllers demonstrated across
all morphologies tested (table I) and all levels of task complex-
ity (table III) was facilitated by the use of morphologically and
behaviorally homogenous teams. Specifically, one controller
was evolved for all robots in a team and all robots used the
same sensory configuration, meaning all robots had the same
collective behavior geometry [38]. This in turn simplified the
transfer of evolved controllers across varying morphologies
with no significant degradation in average task performance.

Hence, overall, this study’s results demonstrate that Hyper-
NEAT is an appropriate method for evolving morphologically
robust controllers. That is, controllers that are fully functional
in a range of team morphologies. In order to ascertain how well
HyperNEAT evolved controllers generalize, ongoing research
is evaluating the evolution of morphologically robust behav-
iors in behaviorally and morphological heterogenous teams
for complex collective behavior tasks that are irregular and
without repetition or symmetry. Furthermore, current research
is comparing HyperNEAT to related evolutionary approaches
that have demonstrated controllers able to accomplish multiple
disparate tasks in dynamic environments [39], as well as direct
encoding neuro-evolution methods such as NEAT [25].

V. CONCLUSIONS

This research presented a study on the efficacy of Hy-
perNEAT for evolving morphologically robust behaviors for
homogenous robot teams that must solve a collective behavior
task of increasing complexity. That is, the average maximum
task performance of behaviors evolved for a given team mor-
phology (robot sensory configuration) that was then transferred
to a different team morphology. Controllers that did not
yield degraded task performance when transferred to another
morphology were considered to be morphologically robust.
The objective was to test and evaluate methods that generate
morphological robust behaviors, where varying morphologies
emulated sensor damage or intentional changes to the sensory
systems of robotic teams.

Results indicated that HyperNEAT was appropriate for
generating morphologically robust controllers for a collective
construction task of increasing complexity. This task required
robots to cooperatively push blocks such that they connected



together to form structures. Task complexity was regulated
by the number of robots required to push blocks and a
construction schema mandating that specific block types be
connected in specific ways. These results support the notion
that developmental neuro-evolution methods, such as Hyper-
NEAT, are appropriate for controller evolution in robotics
applications where robot teams must adapt during their lifetime
to damage or otherwise must dynamically adapt their sensory
configuration to solve new unforseen tasks.
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